150 mA, 10 V, Low Dropout Regulator

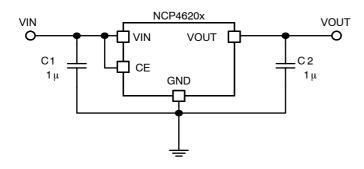
The NCP4620 is a CMOS Linear voltage regulator with 150 mA output current capability. The device is capable of operating with input voltages up to 10 V, with high output voltage accuracy and low temperature-drift coefficient. The NCP4620 is easy to use, with output current fold-back protection and a thermal shutdown circuit included. A Chip Enable function is included to save power by lowering supply current.

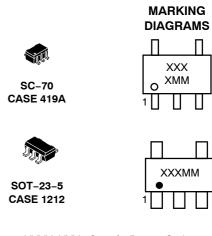
Features

- Operating Input Voltage Range: 2.6 V to 10 V
- Output Voltage Range: 1.2 V to 6.0 V (available in 0.1 V steps)
- Output Voltage Accuracy: ±1.0%
- Low Supply Current: 23 μA
- Low Dropout: 165 mV (I_{OUT} = 100 mA, V_{OUT} = 3.3 V) 400 mV (I_{OUT} = 150 mA, V_{OUT} = 2.8 V)
- High PSRR: 70 dB at 1 kHz
- Line Regulation 0.02%/V Typ
- Current Fold Back Protection
- Thermal Shutdown Protection
- Stable with Ceramic Capacitors
- Available in SC-70 and SOT23 Packages
- These are Pb-Free Devices*

Typical Applications

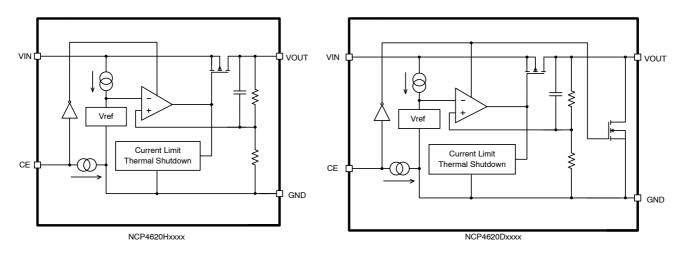
- Battery products powered by 2 Lithium Ion cells
- Networking and Communication Equipment
- Cameras, DVRs, STB and Camcorders
- Toys, industrial applications




Figure 1. Typical Application Schematic

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor™


http://onsemi.com

XXXX, XXX= Specific Device Code MM = Date Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet.

PIN FUNCTION DESCRIPTION

Pin No. SC-70	Pin No. SOT23	Pin Name	Description
5	1	VIN	Input pin
3	2	GND	Ground
1	3	CE	Chip enable pin (Active "H")
4	5	VOUT	Output pin
2	4	NC	No connection

ABSOLUTE MAXIMUM RATINGS

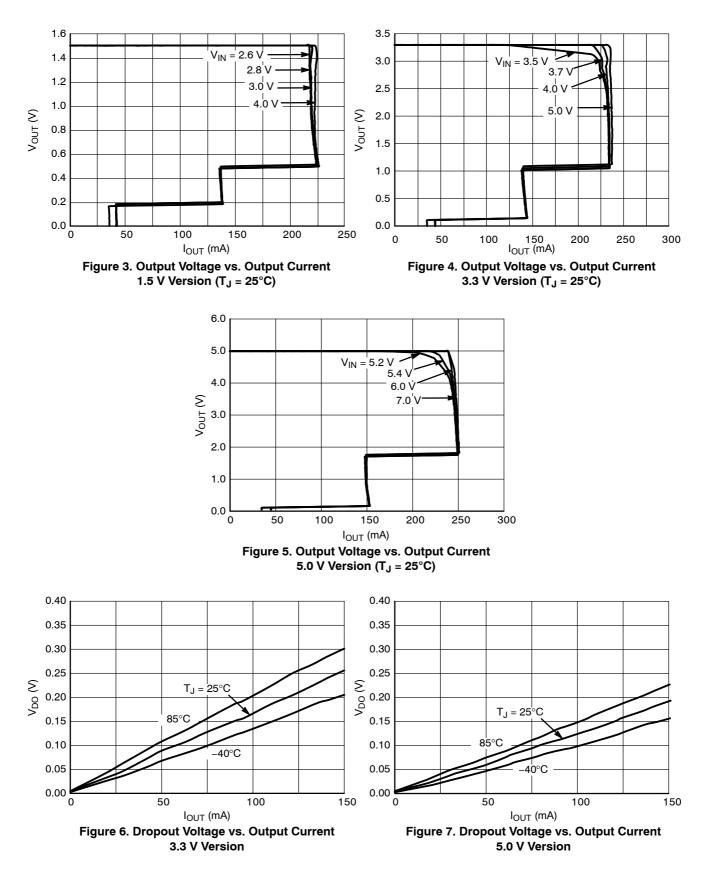
Rating	Symbol	Value	Unit
Input Voltage (Note 1)	V _{IN}	12.0	V
Output Voltage	V _{OUT}	-0.3 to VIN + 0.3	V
Chip Enable Input	V _{CE}	12.0	V
Output Current	I _{OUT}	165	mA
Power Dissipation – SC-70	PD	380	mW
Power Dissipation – SOT23		420	
Operating Temperature	T _A	-40 to +85	°C
Maximum Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	–55 to +125	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 2)	ESD _{MM}	200	V

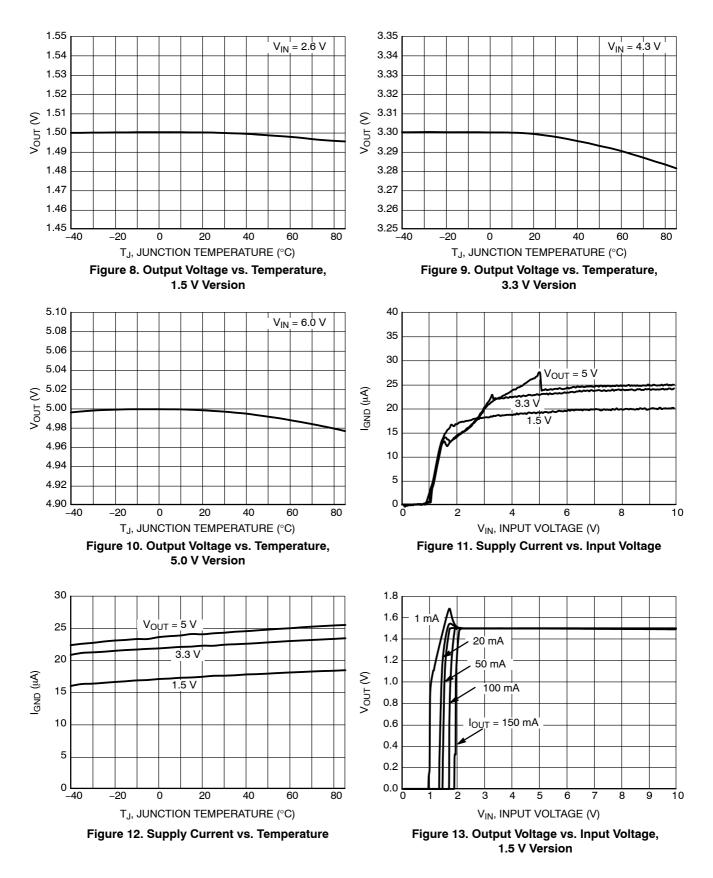
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

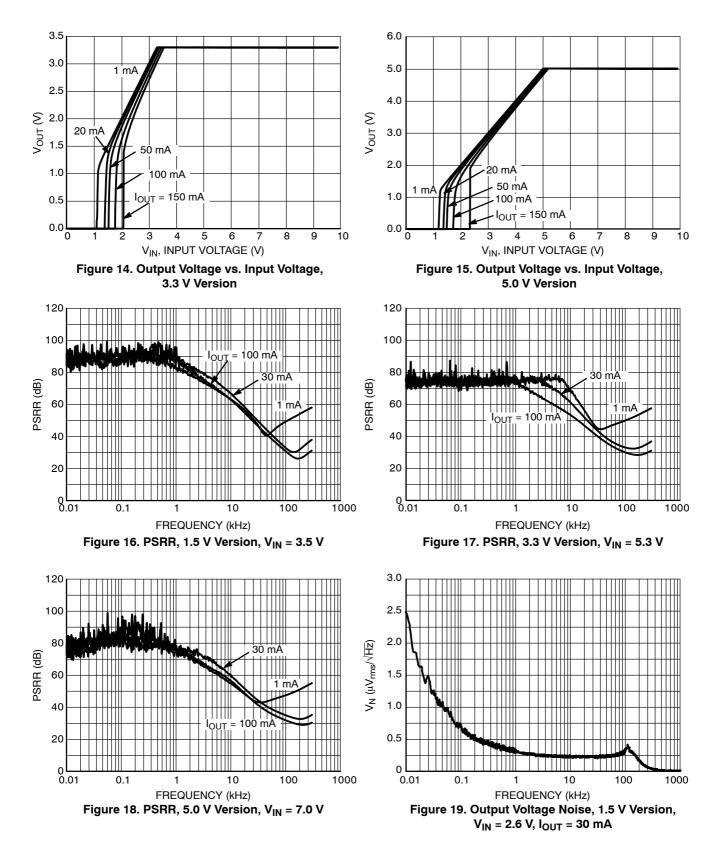
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.

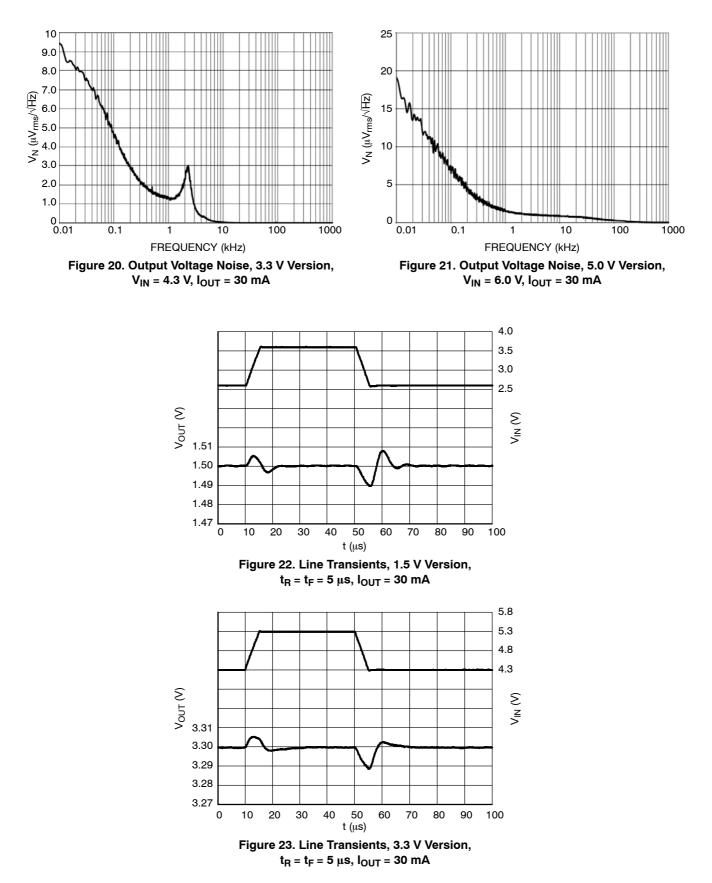
2. This device series incorporates ESD protection and is tested by the following methods:

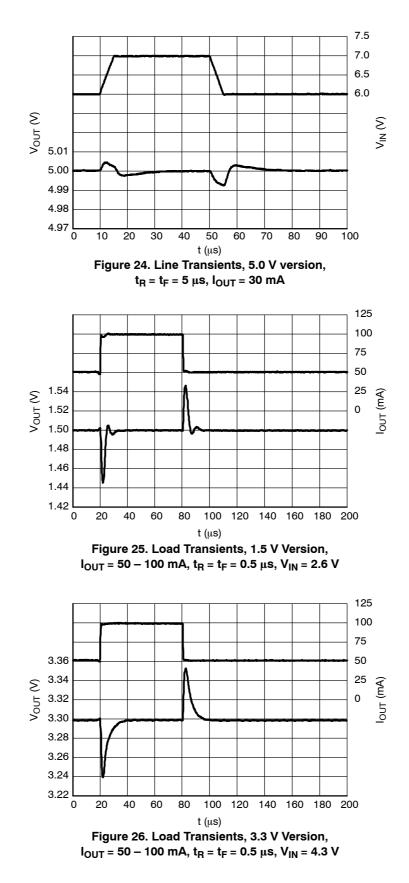
ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114) ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115) Latchup Current Maximum Rating tested per JEDEC standard: JESD78.

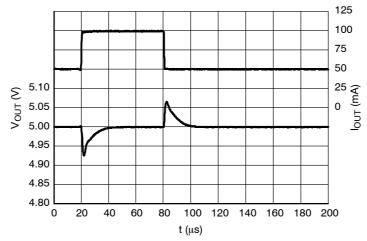

THERMAL CHARACTERISTICS

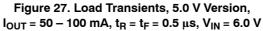

Rating	Symbol	Value	Unit
Thermal Characteristics, SOT23 Thermal Resistance, Junction-to-Air	$R_{ hetaJA}$	238	°C/W
Thermal Characteristics, SC-70 Thermal Resistance, Junction-to-Air	$R_{ ext{ heta}JA}$	263	°C/W

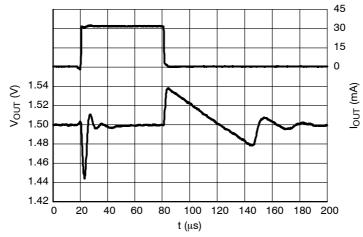


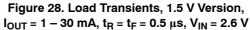

Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Operating Input Voltage			V _{IN}	2.6		10	V
Output Voltage	T _A = +25°C	$V_{OUT} > 1.5 V$ $V_{OUT} \le 1.5 V$	V _{OUT}	x0.99 –15		x1.01 15	V mV
	$-40^\circ C \le T_A \le 85^\circ C$	V _{OUT} > 1.5 V V _{OUT} ≤ 1.5 V		x0.974 -40		x1.023 35	V mV
Output Voltage Temp. Coeffi- cient	-40°C ≤ ⁻	$T_A \le 85^{\circ}C$			±80		ppm/°C
Line Regulation	$\begin{array}{l} V_{OUT(NOM)} + 0.5 \text{ V or } 2. \\ \leq V_{IN} \end{array}$	$V_{OUT(NOM)}$ + 0.5 V or 2.6 V (whichever is higher) $\leq V_{IN} \leq 10 \text{ V}$			0.02	0.2	%/V
Load Regulation	l _{OUT} = 0.1 m	I _{OUT} = 0.1 mA to 150 mA			5	40	mV
Dropout Voltage	I _{OUT} = 150 mA	$\begin{array}{c} 1.2 \ V \leq V_{OUT} < 1.3 \ V \\ 1.3 \ V \leq V_{OUT} < 1.5 \ V \\ 1.5 \ V \leq V_{OUT} < 1.8 \ V \\ 1.8 \ V \leq V_{OUT} < 2.3 \ V \\ 2.3 \ V \leq V_{OUT} < 3.0 \ V \\ 3.0 \ V \leq V_{OUT} < 4.0 \ V \\ 4.0 \ V \leq V_{OUT} < 6.0 \ V \end{array}$	V _{DO}		0.40 0.30 0.25	1.40 1.30 1.10 0.80 0.58 0.48 0.40	V
Output Current		•	I _{OUT}	150			mA
Short Current Limit	V _{OUT}	= 0 V	I _{SC}		40		mA
Quiescent Current			۱ _Q		23	40	μA
Standby Current	V _{IN} = 10 V, V _{CE}	V_{IN} = 10 V, V_{CE} = 0 V, T_A = 25°C			0.1	1.0	μA
CE Pin Threshold Voltage	CE Input Voltage "H"		V _{CEH}	1.7			V
	CE Input Voltage "L"		V _{CEL}			0.8	
CE Pull Down Current			ICEPD		0.3		μA
Power Supply Rejection Ratio	$V_{IN} = V_{OUT} + 1 \text{ V or } 3.0 \\ \Delta V_{IN} = 0.2 \text{ V}_{pk-pk}, \text{ I}_{O}$	$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{OUT} + 1 \ V \ \text{or} \ 3.0 \ V \ \text{whichever} \ \text{is higher}, \\ \Delta V_{IN} = 0.2 \ V_{pk-pk}, \ I_{OUT} = 30 \ \text{mA}, \ f = 1 \ \text{kHz} \end{array}$			70		dB
Output Noise Voltage	f = 10 Hz to 100 kHz, I _{OUT} = 30 mA, V _{OUT} = 1.5 V, V _{IN} = 2.6 V		V _N		90		μV_{rms}
Low Output N-ch Tr. On Resistance	V_{IN} = 7 V, V_{CE} = 0 V		R _{LOW}		250		Ω
Thermal Shutdown Temperature			T _{TSD}		165		°C
Thermal Shutdown Release			T _{TSR}	1	110		°C

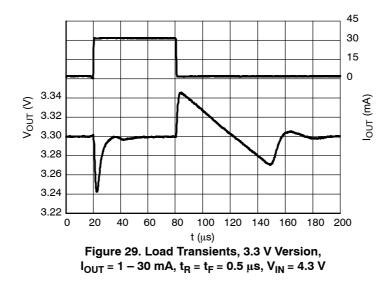


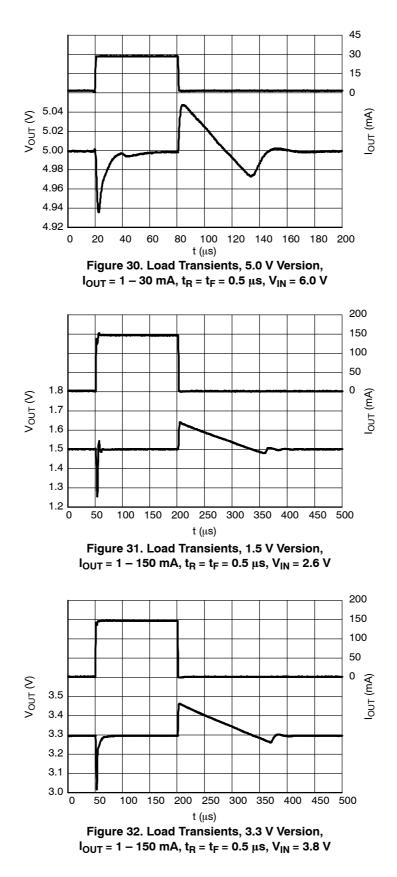


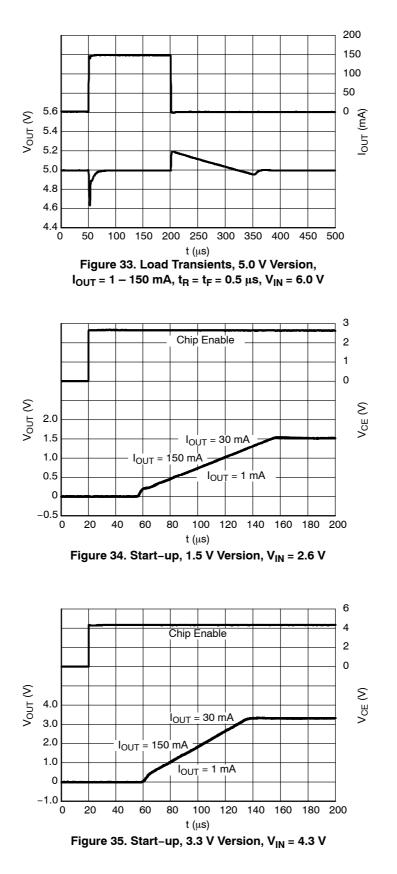


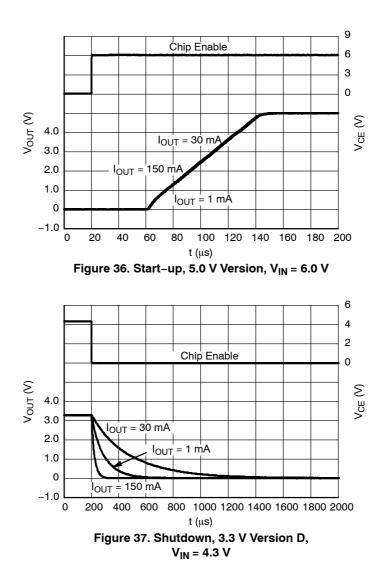












APPLICATION INFORMATION

A typical application circuit for NCP4620 series is shown in Figure 38.

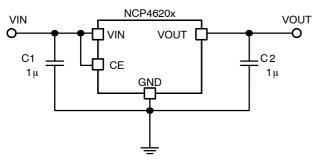


Figure 38. Typical Application Schematic

Input Decoupling Capacitor (C1)

A 1 μ F ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4620. Higher values and lower ESR improves line transient response.

Output Decoupling Capacitor (C2)

A 1 μ F ceramic output decoupling capacitor is enough to achieve stable operation of the IC. If a tantalum capacitor is used, and its ESR is high, loop oscillation may result. The capacitors should be connected as close as possible to the output and ground pins. Larger values and lower ESR improves dynamic parameters.

Enable Operation

The enable pin CE may be used for turning the regulator on and off. The IC is switched on when a high level voltage is applied to the CE pin. The enable pin has an internal pull down current source. If the enable function is not needed connect CE pin to VIN.

Output Discharger

The D version includes a transistor between VOUT and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode.

Thermal

As a power across the IC increase, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature increase for the part. When the device has good thermal conductivity through the PCB the junction temperature will be relatively low in high power dissipation applications.

PCB layout

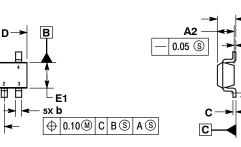
Make the VIN and GND line as large as practical. If their impedance is high, noise pickup or unstable operation may result. Connect capacitors C1 and C2 as close as possible to the IC, and make wiring as short as possible.

ORDERING INFORMATION

Device	Nominal Output Voltage	Description	Marking	Package	Shipping [†]
NCP4620DSN15T1G	1.5 V	Auto discharge	JBE	SOT-23 (Pb-Free)	3000 / Tape & Reel
NCP4620DSN30T1G	3.0 V	Auto discharge	JBX	SOT-23 (Pb-Free)	3000 / Tape & Reel
NCP4620DSN33T1G	3.3 V	Auto discharge	KBA	SOT-23 (Pb-Free)	3000 / Tape & Reel
NCP4620DSN50T1G	5.0 V	Auto discharge	KBT	SOT-23 (Pb-Free)	3000 / Tape & Reel
NCP4620HSN15T1G	1.5 V	Standard	JAE	SOT-23 (Pb-Free)	3000 / Tape & Reel
NCP4620HSN33T1G	3.3 V	Standard	KAA	SOT-23 (Pb-Free)	3000 / Tape & Reel
NCP4620HSN50T1G	5.0 V	Standard	KAT	SOT-23 (Pb-Free)	3000 / Tape & Reel
NCP4620DSQ18T1G	1.8 V	Auto discharge	AD08	SC-70 (Pb-Free)	3000 / Tape & Reel
NCP4620HSQ12T1G	1.2 V	Standard	AC01	SC-70 (Pb-Free)	3000 / Tape & Reel
NCP4620HSQ15T1G	1.5 V	Standard	AC05	SC-70 (Pb-Free)	3000 / Tape & Reel
NCP4620HSQ18T1G	1.8 V	Standard	AC08	SC-70 (Pb-Free)	3000 / Tape & Reel
NCP4620HSQ25T1G	2.5 V	Standard	AC16	SC-70 (Pb-Free)	3000 / Tape & Reel

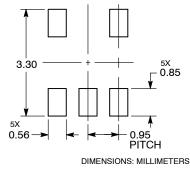
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*To order other package and voltage variants, please contact your ON Semiconductor sales representative.

DATE 28 JAN 2011


SCALE 2:1

Α

Е


L1-

e

SOT-23 5-LEAD CASE 1212-01 ISSUE A

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES: 1. DIMENSIONING AND TOLERANCING PER

ASME Y14.5M, 1994. 2. CONTROLLING DIMENSIONS: MILLIMETERS.

<u> </u>	CONTROLEMA DIMENSIONO. MILLEMIL I LI
3.	DATUM C IS THE SEATING PLANE.

	MILLIMETERS			
DIM	MIN	MAX		
Α		1.45		
A1	0.00	0.10		
A2	1.00	1.30		
b	0.30	0.50		
C	0.10	0.25		
D	2.70	3.10		
Е	2.50	3.10		
E1	1.50	1.80		
e	0.95 BSC			
L	0.20			
L1	0.45	0.75		

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

- M = Date Code
- = Pb-Free Package

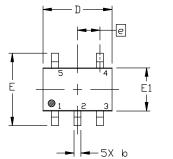
(Note: Microdot may be in either location)

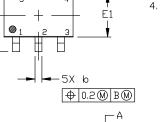
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

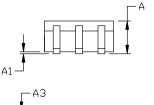
DOCUMENT NUMBER:	98ASH70518A	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOT-23 5-LEAD		PAGE 1 OF 1			
· · ·						
ON Semiconductor and 🔟 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

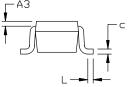
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

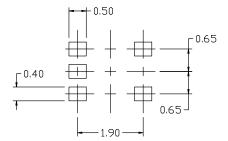
NSEM


SC-88A (SC-70-5/SOT-353) CASE 419A-02 **ISSUE M**


NDTES: 1.


2.


З.


DATE 11 APR 2023

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

DIM	MILLIMETERS				
MIU	MIN.	NDM.	MAX.		
A	0.80	0.95	1.10		
A1			0.10		
A3		-			
b	0.10	0.20	0.30		
С	0.10		0.25		
D	1.80	2.00	5'50		
E	E 2.00 E1 1.15		5'50		
E1			1.35		
e		0.65 BSI	С		
L	L 0.10		0.30		

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,

PROTRUSIONS, OR GATE BURRS.MOLD FLASH, PROTRUSIONS,

OR GATE BURRS SHALL NOT EXCEED 0.1016MM PER SIDE.

CONTROLLING DIMENSION: MILLIMETERS 419A-01 DBSOLETE, NEW STANDARD 419A-02

GENERIC MARKING

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

XXX = Specific Device Code

Μ = Date Code = Pb-Free Package

(Note: Microdot may be in either location)

STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 2: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR 5. CATHODE	STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1	STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2	STYLE 5: PIN 1. CATHODE 2. COMMON ANOD 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4	E
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE	STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 1 5. COLLECTOR	STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	Note: Please refer to style callout. If style to out in the datasheet r datasheet pinout or p	ype is not called efer to the device
DOCUMENT NUMBER:	98ASB42984B			ot when accessed directly from when stamped "CONTROLLED (
DESCRIPTION:	SC-88A (SC-70-	5/SOT-353)			PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative