

Low-Voltage Single Asymmetrical SPDT Analog Switch

DESCRIPTION

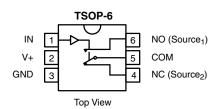
The DG2020 is a single-pole/double-throw monolithic CMOS analog switch designed for high performance switching of analog signals. Combining low power, high speed, low on-resistance and small physical size, the DG2020 is ideal for portable and battery powered applications requiring high performance and efficient use of board space.

The DG2020 is built on Vishay Siliconix's low voltage JI2 process. An epitaxial layer prevents latchup. Break-before-make is guaranteed.

The switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

FEATURES

- Low voltage operation (2.7 V to 5.5 V)
- Low on-resistance R_{ON}
 - $-NO = 0.8 \Omega$
 - $-NC = 1.2 \Omega$
- Low power consumption
- TTL/CMOS compatible
- TSOP-6 package


BENEFITS

- Reduced power consumption
- Simple logic interface
- High accuracy
- · Reduce board space

APPLICATIONS

- Cellular phones
- · Communication systems
- · Portable test equipment
- · Battery operated systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Device Marking: E3xxx

TRUTH TABLE					
LOGIC	NC	NO			
0	ON	OFF			
1	OFF	ON			

ORDERING INFORMATION					
TEMP. RANGE	PACKAGE	PART NUMBER			
- 40 °C to 85 °C	TSOP-6	DG2020DV			

ABSOLUTE MAXIMUM RATINGS						
PARAMETERS	CONDITIONS	LIMITS	UNIT			
V+	Reference to GND	- 0.3 to 6	V			
IN, COM, NC, NO ^a	Reference to GND	- 0.3 to (V+ + 0.3 V)	V			
Continuous Current (any terminal)	Reference to GND	± 50	mΛ			
Peak Current (pulsed at 1 ms, 10 % duty cycle)	Reference to GND	± 200	mA			
Storage Temperature (D suffix)	Reference to GND	- 65 to + 125	°C			
TSOP-6°	Power Dissipation (packages) ^b	570	mW			

Notes

- a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 7 mW/C above 25 °C.

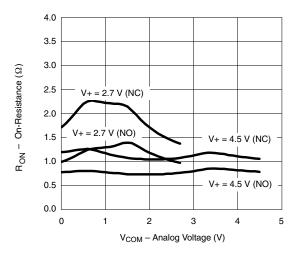
Vishay Siliconix

	PECIFICATION (V+ = 3 V) TEST CONDITION			LIMITS (- 40 °C TO 85 °C)			
PARAMETER	SYMBOL	UNLESS OTHERWISE SPECIFIED,	TEMP.a	LIMITS (- 40 C TO		-	UNIT
1700000	J501	V+ = 3 V, ± 10 %, V _{IN} = 0.4 V or 2 V ^e		MIN.b	TYP.º	MAX.b	ONT
Analog Signal Range ^d	$V_{NO}, V_{NC}, \ V_{COM}$		Full	0	-	V+	>
	Б		Room	-	1.4	2	
On-Resistance	R _{ON(NO)}	V+ = 2.7 V,	Full	-	1.5	2.1	
On-Resistance		$V_{COM} = 1.5 \text{ V}, I_{NO}, I_{NC} = 100 \text{ mA}$	Room	-	2.2	3.2	Ω
	R _{ON(NC)}		Full	-	2.3	3.3	22
R _{ON} Flatness ^d	R _{ON(NO)} Flatness	V+ = 2.7 V, $V_{COM} = 0 \text{ V to } V+, I_{NO}, I_{NC} = 100 \text{ mA}$	Room	-	0.42	-	
			Room	- 2.3	-	2.3	
Switch Off	I _{NO(off)} , I _{NC(off)}	V+ = 3.3 V	Full	- 60	-	60	
Leakage Current ^f		V_{NO} , $V_{NC} = 1 \text{ V/3 V}$, $V_{COM} = 3 \text{ V/1 V}$	Room	- 2.3	-	2.3	_
	I _{COM (off)}		Full	- 60	-	60	nA
Channel-On		V+ = 3.3 V.	Room	- 2.3	-	2.3	
Leakage Current ^f	I _{COM(on)}	V_{NO} , $V_{NC} = V_{COM} = 1 \text{ V/3 V}$	Full	- 60	-	60	
Digital Control							
Input High Voltage	V_{INH}		Full	2	-	-	V
Input Low Voltage	V_{INL}		Full	-	-	0.4	V
Input Capacitance	C _{IN}		Full	-	3.7	-	рF
Input Current	I _{NL} or I _{NH}	V _{IN} = 0 or V+	Full	1	-	1	μA
Dynamic Characteristics							
	+		Room	-	6	10	μs
Turn-On Time	t _{ON(NO)}		Full	-	-	11	
Turn-On Time			Room	-	5	7	
	t _{ON(NC)}	V_{NO} or $V_{NC} = 2 V$,	Full	-	-	8	
		$R_L = 300 \Omega$, $C_L = 35 pF$	Room	-	2	5	
T 0"T	t _{OFF(NO)}		Full	-	-	5.5	
Turn-Off Time	t _{OFF(NC)}		Room	-	2	4	
			Full	-	-	4.5	
Break-Before-Make Time	t _d	V_{NO} or $V_{NC} = 2 \text{ V}$, $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$	Full	1	3	-	
Charge Injectiond	Q _{INJ}	$C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN} = 0 \Omega$	Room	-	1	-	рС
Off-Isolation ^d	QIRR		Room	-	- 52	-	
Crosstalk ^d	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$	Room	-	- 53	-	dE
NO, NC Off	t _{ON(NO)}		Room	-	75	-	
Capacitance ^d	t _{ON(NC)}		Room	-	34	-	
Channel-On	t _{OFF(NO)}	$V_{IN} = 0$ or V_{+} , $f = 1$ MHz	Room	-	88	-	pF
Capacitance ^d	t _{OFF(NC)}		Room	-	95	-	
	011 (140)			l	I		
Power Supply							
Power Supply Power Supply Range	V+		-	2.7	-	3.3	V
• • •	V+ I+	V _{IN} = 0 or V+	- Full	2.7	- 0.2	3.3 1	V µA

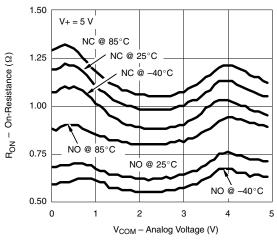
Notes

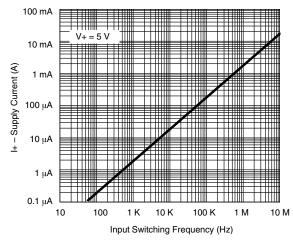
- a. Room = 25 $^{\circ}$ C, Full = as determined by the operating suffix.
- b. Typical values are for design aid only, not guaranteed nor subject to production testing.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- d. Guarantee by design, nor subjected to production test.
- e. V_{IN} = input voltage to perform proper function.
- f. Guaranteed by 5 V leakage testing, not production tested.

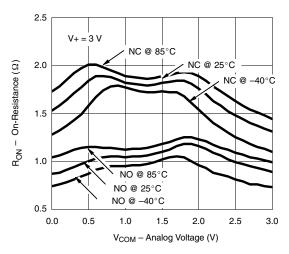
Vishay Siliconix

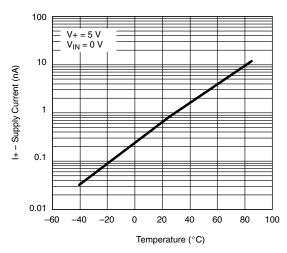

	PECIFICATION (V+ = 5 V) TEST CONDITION			LIMITS (- 40 °C TO 85 °C)			
PARAMETER	SYMBOL	UNLESS OTHERWISE SPECIFIED,	TEMP.a	LIMITS	(- 0	1	UNI
FANAMETEN	STWIDOL	V+ = 5 V, ± 10 %, V _{IN} = 0.8 V or 2.4 V ^e	I CIVIT .	MIN.b	TYP.c	MAX.b	ON
Analog Signal Range ^d	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$		Full	0	-	V+	V
			Room	-	0.8	1.1	
O . D i . i	R _{ON(NO)}	V+ = 4.5 V,	Full	-	0.9	1.2	
On-Resistance		$V_{COM} = 3 \text{ V}, I_{NO}, I_{NC} = 100 \text{ mA}$	Room	-	1.2	1.6	
	R _{ON(NC)}		Full	-	1.3	1.7	Ω
R _{ON} Flatness ^d	R _{ON(NO)} Flatness	V+ = 4.5 V, $V_{COM} = 0 \text{ V to V+}, I_{NO}, I_{NC} = 100 \text{ mA}$	Room	-	0.13	-	
			Room	- 5.3	-	5.3	
Switch Off	I _{NO(off)} , I _{NC(off)}	V+ = 5.5 V,	Full	- 98	-	98	
Leakage Current		V_{NO} , $V_{NC} = 1 \text{ V}/4.5 \text{ V}$, $V_{COM} = 4.5 \text{ V}/1 \text{ V}$	Room	- 5.3	-	5.3	_
	I _{COM} (off)		Full	- 98	=	98	nA
Channel-On		V+ = 5.5 V.	Room	- 5.3	-	5.3	1
Leakage Current	I _{COM(on)}	V_{NO} , $V_{NC} = V_{COM} = 1 \text{ V}/4.5 \text{ V}$	Full	- 98	-	98	
Digital Control							
Input High Voltage	V _{INH}		Full	2.4	-	-	V
Input Low Voltage	V _{INL}		Full	-	-	0.8	V
Input Capacitance	C _{IN}		Full	-	3.5	-	рF
Input Current	I _{NL} or I _{NH}	V _{IN} = 0 or V+	Full	1	-	1	μA
Dynamic Characteristics	1						
			Room	-	3	6	μs
Turn-On Time	t _{ON(NO)}		Full	-	=.	6.5	
Turri-Ori Time			Room	-	2	5	
	t _{ON(NC)}	V_{NO} or $V_{NC} = 3 V$,	Full	-	=.	5.5	
		$R_L = 300 \Omega$, $C_L = 35 pF$	Room	-	1	4	
Turn-Off Time	t _{OFF(NO)}		Full	-	-	4.5	
Turn-Off Time	t _{OFF(NC)}		Room	-	1	3	
			Full	-	-	3.5	
Break-Before-Make Time	t _d	V_{NO} or V_{NC} = 3 V, R_L = 300 Ω , C_L = 35 pF	Full	0.3	1.5	-	
Charge Injection ^d	Q_{INJ}	$C_L = 1 \text{ nF}, V_{GEN} = 0 \text{ V}, R_{GEN} = 0 \Omega$	Room	-	5	-	рC
Off-Isolation ^d	QIRR	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 1 MHz$	Room	-	- 53	-	-10
Crosstalk ^d	X _{TALK}	$H_L = 50 \Omega$, $G_L = 5 \text{ pr}$, $f = 1 \text{ MHz}$	Room	-	- 54	-	dE
NO, NC Off	t _{ON(NO)}		Room	-	65	-	
Capacitance ^d Channel-On	t _{ON(NC)}	\/ O ov\/: f 4 MII-	Room	-	32	-	•
	t _{OFF(NO)}	$V_{IN} = 0$ or $V+$, $f = 1$ MHz	Room	-	90	-	pF
Capacitanced	t _{OFF(NC)}		Room	-	95	-	
Power Supply	, ,						
Power Supply Range	V+			4.5	-	5.5	V
Power Supply Current	I+	V = 0.5*V:	Full	-	0.2	1	μA
D 0 ''	wer Consumption P_C $V_{IN} = 0 \text{ or } V_+$		Full	-	-	5.5	μV

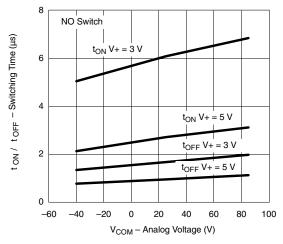
Notes


- a. Room = 25 $^{\circ}$ C, Full = as determined by the operating suffix.
- b. Typical values are for design aid only, not guaranteed nor subject to production testing.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- d. Guarantee by design, nor subjected to production test.
- e. V_{IN} = input voltage to perform proper function.
- f. Guaranteed by 5 V leakage testing, not production tested..

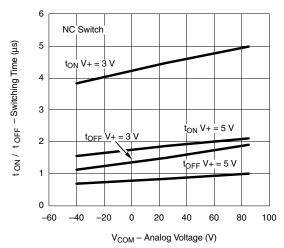

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

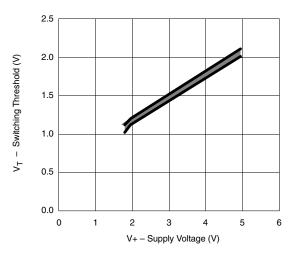

R_{ON} vs. V_{COM} and Supply Voltage

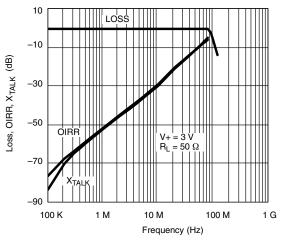

R_{ON} vs. Analog Voltage and Temperature

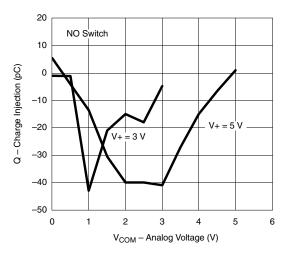

Supply Current vs. Input Switching Frequency

R_{ON} vs. Analog Voltage and Temperature

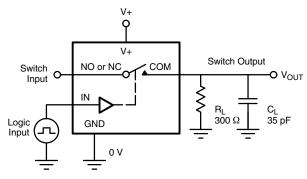

Supply Current vs. Temperature


Switching Time vs. Temperature and Supply Voltage


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)


Switching Time vs. Temperature and Supply Voltage

Switching Threshold vs. Supply Voltage



Insertion Loss, Off-Isolation Crosstalk vs. Frequency

Charge Injection vs. Analog Voltage

TEST CIRCUITS

 C_L (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

Logic Input V_{INH} V_{INL} $t_r < 20 \text{ ns}$ $t_f < 20 \text{ ns}$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

Fig. 1 - Switching Time

TEST CIRCUITS

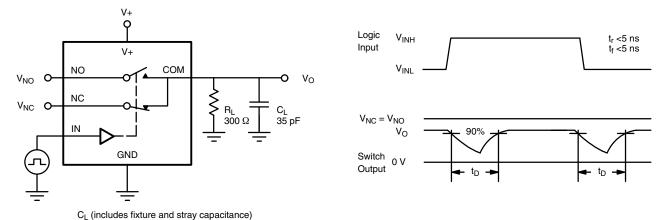


Fig. 2 - Break-Before-Make Interval

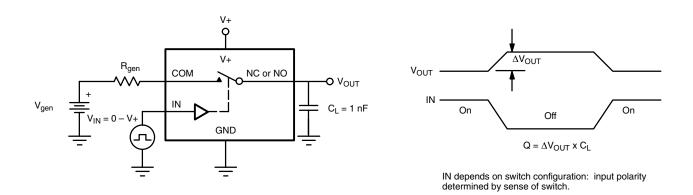


Fig. 3 - Charge Injection

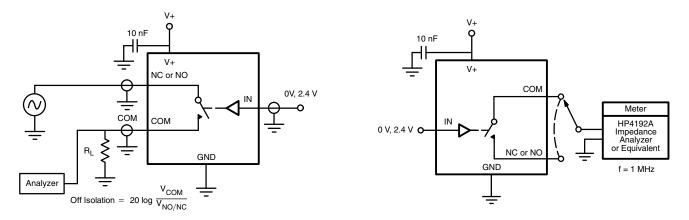
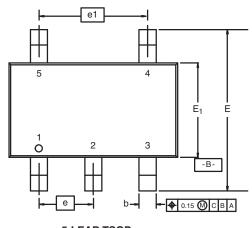
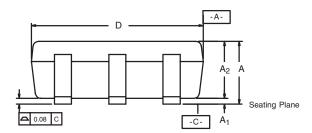


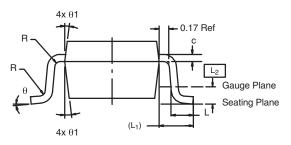
Fig. 4 - Off-Isolation

Fig. 5 - Channel off/on Capacitance


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg271676.


TSOP: 5/6-LEAD

JEDEC Part Number: MO-193C



5-LEAD TSOP

	MILLIMETERS			ı	NCHES	
Dim	Min	Nom	Max	Min	Nom	Max
Α	0.91	-	1.10	0.036	-	0.043
A ₁	0.01	-	0.10	0.0004	-	0.004
A ₂	0.90	-	1.00	0.035	0.038	0.039
b	0.30	0.32	0.45	0.012	0.013	0.018
С	0.10	0.15	0.20	0.004	0.006	0.008
D	2.95	3.05	3.10	0.116	0.120	0.122
E	2.70	2.85	2.98	0.106	0.112	0.117
E ₁	1.55	1.65	1.70	0.061	0.065	0.067
е	0.95 BSC			0.0374 BSC		
e ₁	1.80	1.90	2.00	0.071	0.075	0.079
L	0.32	-	0.50	0.012	-	0.020
L ₁	0.60 Ref			0.024 Ref		
L ₂	0.25 BSC			0.010 BSC		
R	0.10	-	-	0.004	-	-
θ	0°	4°	8°	0°	4°	8°
θ_1	7° Nom				7° Nom	
	ECN: C-06593-Rev. I, 18-Dec-06 DWG: 5540					

Document Number: 71200

18-Dec-06

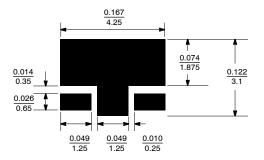
Mounting LITTLE FOOT® TSOP-6 Power MOSFETs

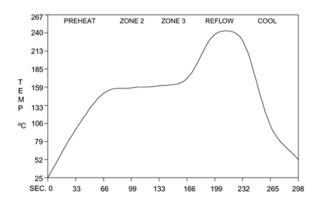
Surface mounted power MOSFET packaging has been based on integrated circuit and small signal packages. Those packages have been modified to provide the improvements in heat transfer required by power MOSFETs. Leadframe materials and design, molding compounds, and die attach materials have been changed. What has remained the same is the footprint of the packages.

The basis of the pad design for surface mounted power MOSFET is the basic footprint for the package. For the TSOP-6 package outline drawing see http://www.vishay.com/doc?71200 and see http://www.vishay.com/doc?72610 for the minimum pad footprint. In converting the footprint to the pad set for a power MOSFET, you must remember that not only do you want to make electrical connection to the package, but you must made thermal connection and provide a means to draw heat from the package, and move it away from the package.

In the case of the TSOP-6 package, the electrical connections are very simple. Pins 1, 2, 5, and 6 are the drain of the MOSFET and are connected together. For a small signal device or integrated circuit, typical connections would be made with traces that are 0.020 inches wide. Since the drain pins serve the additional function of providing the thermal connection to the package, this level of connection is inadequate. The total cross section of the copper may be adequate to carry the current required for the application, but it presents a large thermal impedance. Also, heat spreads in a circular fashion from the heat source. In this case the drain pins are the heat sources when looking at heat spread on the PC board.

Figure 1 shows the copper spreading recommended footprint for the TSOP-6 package. This pattern shows the starting point for utilizing the board area available for the heat spreading copper. To create this pattern, a plane of copper overlays the basic pattern on pins 1,2,5, and 6. The copper plane connects the drain pins electrically, but more importantly provides planar copper to draw heat from the drain leads and start the process of spreading the heat so it can be dissipated into the ambient air. Notice that the planar copper is shaped like a "T" to move heat away from the drain leads in all directions. This pattern uses all the available area underneath the body for this purpose.




FIGURE 1. Recommended Copper Spreading Footprint

Since surface mounted packages are small, and reflow soldering is the most common form of soldering for surface mount components, "thermal" connections from the planar copper to the pads have not been used. Even if additional planar copper area is used, there should be no problems in the soldering process. The actual solder connections are defined by the solder mask openings. By combining the basic footprint with the copper plane on the drain pins, the solder mask generation occurs automatically.

A final item to keep in mind is the width of the power traces. The absolute minimum power trace width must be determined by the amount of current it has to carry. For thermal reasons, this minimum width should be at least 0.020 inches. The use of wide traces connected to the drain plane provides a low impedance path for heat to move away from the device.

REFLOW SOLDERING

Vishay Siliconix surface-mount packages meet solder reflow reliability requirements. Devices are subjected to solder reflow as a test preconditioning and are then reliability-tested using temperature cycle, bias humidity, HAST, or pressure pot. The solder reflow temperature profile used, and the temperatures and time duration, are shown in Figures 2 and 3.

Ramp-Up Rate	+6°C/Second Maximum
Temperature @ 155 ± 15°C	120 Seconds Maximum
Temperature Above 180°C	70 – 180 Seconds
Maximum Temperature	240 +5/-0°C
Time at Maximum Temperature	20 - 40 Seconds
Ramp-Down Rate	+6°C/Second Maximum

FIGURE 2. Solder Reflow Temperature Profile

Document Number: 71743 www.vishay.com 27-Feb-04

Vishay Siliconix

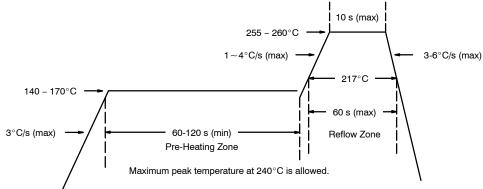


FIGURE 3. Solder Reflow Temperature and Time Durations

THERMAL PERFORMANCE

A basic measure of a device's thermal performance is the junction-to-case thermal resistance, $R\theta_{jc},$ or the junction-to-foot thermal resistance, $R\theta_{\mbox{\scriptsize if}}.$ This parameter is measured for the device mounted to an infinite heat sink and is therefore a characterization of the device only, in other words, independent of the properties of the object to which the device is mounted. Table 1 shows the thermal performance of the TSOP-6.

TABLE 1.				
Equivalent Steady State Performance—TSOP-6				
Thermal Resistance $R\theta_{jf}$	30°C/W			

SYSTEM AND ELECTRICAL IMPACT OF TSOP-6

In any design, one must take into account the change in MOSFET r_{DS(on)} with temperature (Figure 4).

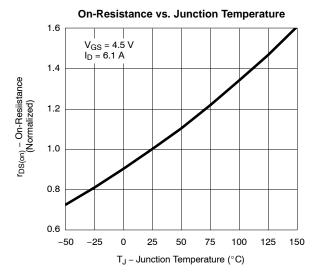



FIGURE 4. Si3434DV

www.vishay.com Document Number: 71743 27-Feb-04

VISHAY.

RECOMMENDED MINIMUM PADS FOR TSOP-6

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.