PRODUCT / PROCESS CHANGE NOTIFICATION

1. PCN basic data			
1.1 Company		STMicroelectronics International N.V	
1.2 PCN No.		IPD/15/9179	
1.3 Title of PCN		L4984D (Product Line UE41) : Metal mask modification	
1.4 Product Category		L4984D and L4984DTR (CCM PFC controller)	
1.5 Issue date		2015-04-27	

2. PCN Team			
2.1 Contact supplier	2.1 Contact supplier		
2.1.1 Name	ROBERTSON HEATHER		
2.1.2 Phone	-1 8475853058		
2.1.3 Email	heather.robertson@st.com		
2.2 Change responsibility			
2.2.1 Product Manager	Francesca Marta SANDRINI		
2.1.2 Marketing Manager	Vincenzo MONTEMEZZO		
2.1.3 Quality Manager	.3 Quality Manager Paolo MORETTI		

3. Change				
3.1 Category	3.3 Manufacturing Location			
Die redesign	Functional / pin layout change	Ang Mo Klo, Singapore		

4. Description of change				
	New			
4.1 Description	Current silicon version is UE41AC6	New silicon version is UE41AD6		
4.2 Anticipated Impact on form,fit, function, quality, reliability or processability?	No impact			

5. Reason / motivation for change			
5.1 Motivation	For designs that do not use a Start up network with external mosfet, there could be a potential risk of misbehavior of the device. In order to prevent this problem, the UVLO block has been changed so as to provide a stable Supply Current before Start up from zero to the Vcc Turn-on threshold.		
5.2 Customer Benefit	QUALITY IMPROVEMENT		

6. Marking of parts / traceability of change		
6.1 Description	This modification will be identified by a new internal part number : L4984D-3/ L4984DTR-3/	

7. Timing / schedule		
7.1 Date of qualification results	2015-04-01	
7.2 Intended start of delivery	2015-10-01	
7.3 Qualification sample available?	Upon Request	

8. Qualification / Validation			
3.1 Description UE41 Reliability Report.pdf			
8.2 Qualification report and qualification results	Available (see attachment)	Issue Date	2015-04-27

9. Attachments (additional documentations)

9179PpPrdtLst.pdf UE41 Reliability Report.pdf L4984D-3 VERIFICATION BY APPLICATION TEAM.pdf

10. Affected parts				
10	10.2 New (if applicable)			
10.1.1 Customer Part No 10.1.2 Supplier Part No		10.1.2 Supplier Part No		
	L4984DTR			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND / OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2014 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Public Products List

PCN Title : L4984D (Product Line UE41) : Metal mask modification

PCN Reference : IPD/15/9179

PCN Created on : 01-Apr-2015

Subject : Public Product List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

L4984DTR

L4984D

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND / OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2014 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

23/Febr./2015 Plastic sample, soldered on EVL4984-350W ST demo-board

Ton time evaluation

After a test on a sample of the previous silicon version to have a reference image (Image 1), tests have been performed on a sample of the new silicon version at different supply voltage and temperature. All the tests have been performed with $C_{Vcc} = 100 \ \mu\text{F} + 470 \ \text{nF}$ and $R_{\text{startup}} = 300 \ \text{k}\Omega$

The behavior of the sample was correct. For some images see from 2 to 7.

23/Febr./2015 Plastic sample, soldered on EVL4984-350W ST demo-board

Dependence of Tstart (startup time) from temperature and Vac supply voltage

* Thigh: the samples was heated by a hot-air gun setted at 160 C for 2 minutes

*Tlow: the samples was cooled down by a spray can

Reliability Report

General Information			
Product Line	UE41		
Product Description	CCM PFC CONTROLLER		
Product division	I&PC		
Package	SSOP 10L		
Silicon process technology	BCD2S		

Locations			
Wafer fab location	ANG MO KIO		
Assembly plant location	BOUSKOURA		
Reliability assessment	Pass		

DOCUMENT HISTORY

Version	Date	Pages	Author	Comment
1.0	21-Apr-15	13	S.O.Cannizzaro	Original document

Approved by

Alceo Paratore

Table of Contents

1	APPLICABLE AND REFERENCE DOCUMENTS				
2	RE	ELIABILITY EVALUATION overview	4		
2	2.1	Objectives	4		
2	2.2	Conclusion	4		
~			_		
3	De	evice Characteristics	5		
3	3.1	Device description	5		
	3.1.	1.1 Generalities	5		
	3.1.	1.2 Pin connection	6		
	3.1.	1.3 Block diagram	7		
	3.1.	1.4 Bonding diagram	8		
	3.1.	1.5 Package outline/Mechanical data	9		
3	8.2	Traceability	10		
4	Te	ests results summary	11		
2	l.1	LOTs information	11		
2	1.2	Test plan and results summary	11		
5	Te	ests Description & detailed results	12		
Ę	5.1	Package oriented tests	12		
	5.1.	1.1 Pre-Conditioning	12		
	5.1.	1.2 High Temperature Storage	12		
	5.1.	1.3 Temperature Humidity Storage	12		
	5.1.	1.4 Thermal Cycles	12		
	5.1.	1.5 Autoclave	12		
	5.2	Electrical Characterization Tests	13		
5	5.2.	2.1 Latch-up	13		

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

cription
st qualification for integrated circuits Specification For Product Development

2 RELIABILITY EVALUATION OVERVIEW

2.1 Objectives

This report contains the reliability evaluation of the UE41 device diffused in ANG MO KIO and assembled in SSOP 10L in BOUSKOURA.

According to Reliability Qualification Plan, below is the list of the trials performed:

Package Oriented Tests

- Preconditioning
- Temperature Cycling
- Autoclave
- High Temperature Storage Life
- Thermal Humidity Storage

Electrical Characterization

- ESD resistance test
- LATCH-UP resistance test

2.2 Conclusion

Taking in account the results of the trials performed **the UE41 diffused in ANG MO KIO and assembled in SSOP 10L in BOUSKOURA can be qualified from reliability viewpoint.**

<u>3 DEVICE CHARACTERISTICS</u>

3.1 Device description

3.1.1 Generalities

The device is a current-mode PFC controller operating with line-modulated fixed-off-time (LMFOT) control. A proprietary LM-FOT modulator allows fixed-frequency operation for boost PFC converters as long as they are operated in CCM (Continuous Conduction Mode).

The chip comes in a 10 pin SO package and offers a low-cost solution for CCM-operated boost PFC preregulators in EN61000-3-2 and JEIDAMITI compliant applications, in a power range that spans from few hundred W to 1 kW and above.

The highly linear multiplier includes a special circuit, able to reduce the crossover distortion of the ac input current, that allows wide-range-mains operation with a reasonably low THD, even over a large load range.

The output voltage is controlled by means of a voltage-mode error amplifier and an accurate (1% $@Tj = 25^{\circ}C$) internal voltage reference.

Loop stability is optimized by the voltage feedforward function (1/V2 correction), which in this IC uses a proprietary technique that significantly improves also line transient response in case of mains drops and surges ("bidirectional").

The device features low consumption and includes a disable function suitable for IC remote ON/OFF. These features allow the usage in applications supposed to comply even with the latest energy saving requirements (Blue Angel, EnergyStar, Energy2000, etc.).

In addition to an over voltage protection able to keep the output voltage under control during transient conditions, the IC is provided also with a protection against feedback loop failures or erroneous settings. Other on-board protection functions allow that brownout conditions and

boost inductor saturation can be safely handled.

Soft-start limits peak current and extends OFF time to prevent flux runaway in the initial cycles.

The totem-pole output stage, capable of 600 mA source and 800 mA sink current, is suitable for big MOSFET or IGBT drive.

3.1.2 Pin connection

3.1.3 Block diagram

3.1.4 Bonding diagram

3.1.5 Package outline/Mechanical data

3.2 Traceability

Wafer fab information			
Wafer fab manufacturing location	ANG MO KIO		
Wafer diameter	6 inches		
Wafer thickness	375 μm		
Silicon process technology	BCD2S		
Die finishing back side	CHROMIUM/NICKEL/GOLD		
Die size	1770x2430 μm		
Bond pad metallization layers	AlSiCu		
Passivation	NITRIDE		
Metal levels	2		

Assembly Information			
Assembly plant location	BOUSKOURA		
Package description	SSOP 10L		
Molding compound	G700K		
Wires bonding materials/diameters	Au/1mils		
Die attach material	8601S-25		
Lead solder material	NiPdAu		

4 TESTS RESULTS SUMMARY

4.1 LOTs information

Lot ID #	Comments
Lot 1	UE41 ¹²
Lot 2	UE40

4.2 Test plan and results summary

Package Oriented Tests						
Test	Method	Conditions	Failure/SS			
			Lot 1	Lot 2	Duration	Note
PC	Pre-Conditioning: Moisture sensitivity level 3					
		192h 30°C/60% - 3 reflow PBT 260°C	0/77	0/250		
TC	Temperature Cycling					
	PC before	Temp. range: -65/+150°C	0/77	0/77	500cy	
AC	Autoclave					
	PC before	121°C 2atm		0/77	168h	
HTSL	High Temperature Storage					
	No bias	Tamb=150°C		0/77	1000h	
THS	Temperature Humic	dity Storage				
	No Bias	85%RH/85°C		0/77	1000h	

Electrical Characterization Tests					
Test	Method	Conditions	Failure/SS		
			Lot 1	Duration	Note
ESD	Electro Static Discha	ctro Static Discharge			
	Human Body Model	+/- 1.5kV on Pin 5 +/- 2kV on other pins	0/3		
	Machine Model	+/- 200V	0/3		
	Charge Device Model	+/- 500V +/- 750V on corner pins	0/3		
LU	Latch-Up				
	Over-voltage and	Tamb=85°C	0/6		
	Current Injection	Jedec78			

¹ UE41 is a modification of the already qualified UE40.

² Trials on UE41 were performed on AC6 revision.

5 TESTS DESCRIPTION & DETAILED RESULTS

5.1 Package oriented tests

5.1.1 Pre-Conditioning

The device is submitted to a typical temperature profile used for surface mounting, after a controlled moisture absorption.

The scope is to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.

5.1.2 High Temperature Storage

The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.

The scope is to investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding

5.1.3 Temperature Humidity Storage

The device is stored in unbiased condition, at controlled conditions of ambient temperature and relative humidity. The scope is to investigate the failure mechanisms activated in the die-package environment in wet conditions.

5.1.4 Thermal Cycles

The purpose of this test is to evaluate the thermo mechanical behavior under moderate thermal gradient stress. Test flow chart is the following:

- Initial testing @ Ta=25°C.
- Readout @ 200 cycles.
- Final Testing @ 500 cycles @ Ta=25°C.

TEST CONDITIONS:

• Ta= -65°C to +150°C(air)

5.1.5 Autoclave

The purpose of this test is to point out critical water entry path with consequent corrosion phenomena related to chemical contamination and package hermeticity.

- Test flow chart is the following:
 - Initial testing @ Ta=25°C.
 - Final Testing (168hrs) @ Ta=25°C.
- TEST CONDITIONS:
 - P=2.08 atm
 - Ta=121°C
 - test time= 168 hrs

5.2 Electrical Characterization Tests

5.2.1 Latch-up

This test is intended to verify the presence of bulk parasitic effects inducing latch-up.

The device is submitted to a direct current forced/sinked into the input/output pins. Removing the direct current no change in the supply current must be observed.

Stress applied:

condition	NEG. INJECTION	POS. INJECTION	OVERVOLTAGE
IN low: 0V	-100mA	Inom+100mA	Vcc=22.5V
	Note1	Note3	
IN high: 1.8V	-100mA	Inom+100mA	Vcc=22.5V
	Note2	Note3	

Note1: Trigger voltage clamped at -0.7V (pins 4, 7, 2).

Note2: Trigger voltage clamped at -0.7V (pin 7), -0.2V(pin 4), -0.6V (pin 9).

Note3: Trigger voltage clamped at +2.4V (pin 4), +3.5V (pin 5, 7), +7V (pin 2), +16V (pin 9), +3.26 (pins 1, 3, 6)

5.2.2 E.S.D.

This test is performed to verify adequate pin protection to electrostatic discharges. The flow chart is the following:

- Initial testing @ Ta=25°C
- ESD discharging @ Ta=25°C
- Final Testing @ Ta=25°C

TEST CONDITIONS:

- Human Body Model ANSI/ESDA/JEDEC STANDARD JES001
- Machine Model JEDEC STANDARD EIA/JESD22-A115
- Charge Device Model ANSI/ESD STM 5.3.1 ESDA JEDEC JESD22-C101