

CGHV96100F2

100 W, 8.4 - 9.6 GHz, 50-ohm, Input/Output Matched GaN HEMT

Description

Wolfspeed's CGHV96100F2 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) on Silicon Carbide (SiC) substrates. This GaN Internally Matched (IM) FET offers excellent power added efficiency in comparison to other technologies. GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to GaAs transistors. This IM FET is available in a metal/ceramic flanged package for optimal electrical and thermal performance.

En: CGHV96100F2 Package Type: 440217

Typical Performance Over 8.4 - 9.6 GHz ($T_c = 25^{\circ}C$)

Parameter	8.4 GHz	8.8 GHz	9.0 GHz	9.2 GHz	9.4 GHz	9.6 GHz	Units
Linear Gain	13.8	12.8	13.0	12.4	11.8	11.4	dB
Output Power	171	163	160	150	137	131	W
Power Gain	10.3	10.1	10.0	9.7	9.4	9.1	dB
Power Added Efficiency	45.5	42.8	41.5	39.2	35.5	35.4	%

Note: Measured in CGHV96100F2-TB (838179) under 100µs pulse width, 10% duty, P_{IN} 42.0 dBm (16 W)

Features

- 8.4 9.6 GHz Operation
- 145 W P_{OUT} typical
- 10 dB Power Gain
- 40% Typical PAE
- 50 Ohm Internally Matched
- <0.3 dB Power Droop

Applications

- Marine Radar
- Weather Monitoring
- Air Traffic Control
- Maritime Vessel Traffic Control
- Port Security

Rev. 3.2, 2022-12-8

Large Signal Models Available for ADS and MWO

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	120		
Gate-source Voltage	V _{GS}	-10, +2	V	25°C
Power Dissipation	P _{DISS}	222.0	W	Pulsed
Storage Temperature	T _{STG}	-65, +150	90	
Operating Junction Temperature	TJ	225	°C	
Maximum Drain Current ¹	I _{DMAX}	12	А	
Maximum Forward Gate Current	I _{GMAX}	28.8	mA	25°C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case	R _{θJC}	0.73	°C/W	Pulse Width = 100μs, Duty Cycle = 10%, 85°C, P _{DISS} = 173 W
Case Operating Temperature ³	T _c	-40, +125	°C	

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering at wolfspeed.com/rf/document-library

³ See also, the Power Dissipation De-rating Curve on Page 9

Electrical Characteristics (Frequency = 9.6 GHz unless otherwise stated; T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ¹							
Gate Threshold	$V_{GS(th)}$	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_D = 28.8 \text{ mA}$	
Gate Quiescent Voltage	V _{GS(Q)}	-	-2.7	-	v	$V_{DS} = 40 \text{ V}, I_{D} = 1000 \text{ mA}$	
Saturated Drain Current ²	I _{DS}	20.7	28.8	-	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$	
Drain-Source Breakdown Voltage	V_{BR}	100	-	-	V	$V_{GS} = -8 \text{ V}, I_D = 28.8 \text{ mA}$	
RF Characteristics ³							
Small Signal Gain	S21	10.5	12.4	-			
Input Return Loss at 8.4 - 9.4 GHz	611	-	-5.2	-2.8	٩D	V = 40 V L = 1000 m A D = 20 dDm	
Input Return Loss at 9.4 - 9.6 GHz	511	Ι	-	-3.3	uБ	$V_{DD} = 40$ V, $I_{DQ} = 1000$ mA, $P_{IN} = -20$ dBm	
Output Return Loss	S22	_	-12.3	-6.0			
Power Output ^{3,4}	Pout	100	131.0	_	W		
Power Added Efficiency ^{3,4}	PAE	30	45	_	%	V _{DD} = 40 V, I _{DQ} = 1000 mA, P _{IN} = 41.75 dBm	
Power Gain ^{3,4}	G _P	_	10.2	_	dB		
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, $V_{DD} = 40 \text{ V}$, $I_{DQ} = 1000 \text{ mA}$	

Notes:

¹ Measured on wafer prior to packaging

² Scaled from PCM data

 $^{\scriptscriptstyle 3}$ Measured in CGHV96100F2-AMP (838179) under 100 μs pulse width, 10% duty

⁴ Fixture loss de-embedded using the following offsets: f = 9.6 GHz. Input = 0.5 dB and Output = 0.5 dBa

Frequency (GHz)

Rev. 3.2, 2022-12-8

Figure 3. Output Power vs Input Power V_{DD} = 40 V, Pulse Width = 100µsec, Duty Cycle = 10%

Figure 4. Power Gain vs Frequency and Input Power $V_{DD} = 40 \text{ V}$, Pulse Width = 100 μ sec, Duty Cycle = 10%

Rev. 3.2, 2022-12-8

Figure 5. Power Added Efficiency vs Input Power V_{DD} = 40 V, Pulse Width = 100µsec, Duty Cycle = 10%

Figure 6. Output Power vs Time $V_{DD} = 40 \text{ V}, P_{IN} = 41 \text{ dBm}, \text{Duty Cycle} = 10\%$

Figure 7. Output Power vs Input Power & Frequency $V_{DD} = 40 \text{ V}$, Pulse Width = 100 μ sec, Duty Cycle = 10%

Rev. 3.2, 2022-12-8

CGHV96100F2-AMP Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 47 OHM +/-1%, 1/16 W, 0603, SMD	1
C1, C11	CAP, 1.6pF, +/- 0.1pF, 200V, 0402, ATC 600L	2
C2, C12	CAP, 1.0pF, +/- 0.1pF, 200V, 0402 ATC 600L	2
C3, C13	CAP, 10pF +/-5%, 0603, ATC	2
C4, C14	CAP, 470pF +/-5%, 100 V, 0603	2
C5, C15	CAP, 33000pF, 0805, 100 V, X7R	2
C6	CAP, 10μF, 16 V, TANTALUM	1
C18	CAP, 470μF +/-20%, ELECTROLYTIC	1
J1, J2	CONNECTOR, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	CONNECTOR, HEADER, RT>PLZ .1CEN LK 9POS	1
J4	CONNECTOR, SMB, STRAIGHT JACK	1
-	PCB, TEST FIXTURE, TACONICS RF35P, 20 MIL THK, 440210 PKG	1
-	2-56 SOC HD SCREW 1/4 SS	4
-	#2 SPLIT LOCKWASHER SS	4
Q1	CGHV96100F2	1

CGHV96100F2-AMP Demonstration Amplifier Circuit

Rev. 3.2, 2022-12-8

CGHV96100F2-AMP Demonstration Amplifier Circuit Schematic

CGHV96100F2-AMP Demonstration Amplifier Circuit Outline

Rev. 3.2, 2022-12-8

CGHV96100F2 Power Dissipation De-rating Curve

Note. Shaded area exceeds Maximum Case Operating Temperature (See Page 2)

CGHV96100F2 Transient Curve

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	2	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	СDМ	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

Rev. 3.2, 2022-12-8

Product Dimensions CGHV96100F2 (Package Type – 440217)

NOTES: (UNLESS OTHERWISE SPECIFIED)

- 1. INTERRET DRAVING IN ACCORDANCE VITH ANSI V14.5M-2009 2. ADHESIVE FROM LID MAY EXTEND A MAXIMUM DF .020 BEVOND EDGE DF LID
- 3. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF .008 IN ANY DIRECTION
- 4. ALL PLATED SURFACES ARE GOLD OVER NICKEL

Rev. 3.2, 2022-12-8

11

Part Number System

Table 1.

Parameter	Value	Units
Upper Frequency ¹	9.6	GHz
Power Output	100	W
Package	Flange	_

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value		
A	0		
В	1		
С	2		
D	3		
E	4		
F	5		
G	6		
Н	7		
J	8		
К	9		
Examples	1A = 10.0 GHz 2H = 27.0 GHz		

Rev. 3.2, 2022-12-8

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV96100F2	GaN HEMT	Each	CO STO
CGHV96100F2-AMP	Test board with GaN HEMT	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2013-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 3.2, 2022-12-8